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Abstract

Cryptocurrencies have seen a meteoric rise in popularity in the last 10 years since the invention of
Bitcoin. It is typical for cryptocurrencies to require every participant to keep a record of all the
history. As usage skyrocketed this solution obviously did not scale. The Bitcoin paper includes a
solution called SPV, which reduces the amount of information a participant needs to know, however
the information is still linear in chain size. NIPoPoWs (Non-Interactive Proofs of Proof-of-Work)
are a new advancement, providing an improvement to logarithmic in chain size instead of linear,
however the model assumed by NIPoPoWs is not directly compatible with any of the popular
cryptocurrencies.

In this work we explore the implementation of NIPoPoWs on Bitcoin-based cryptocurrencies.
We study how a chain can be augmented with a crucial data structure called the interlink via
a User-Activated Velvet Fork. We design software called the interlinker, which creates such a
fork on a given chain. We provide two implementations of an interlinker, one which requires a
full node and one which requires a lite node, both released as open-source software. We deploy
our solutions on the Bitcoin Cash testnet, and produce reliability metrics for our deployment.
Furthermore, we introduce a new approach for encoding interlink commitments in blocks, called
interlink compression, which reduces proof sizes even further.

Finally, we provide a working implementation of a prover, also released as open-source. The
prover enables users to generate suffix and infix proofs on any Bitcoin-based chain which has
been velvet forked using our method, including the Bitcoin Cash testnet, where our fork has been
deployed. The proofs generated can then be used for super-lite clients, cross chain transactions,
and more.
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Chapter 1

Introduction

1.1 Motivation
Cryptocurrencies are digital assets that utilize cryptography in order to allow value transfer, with-
out the need of a central party or trusted authority. The technology originally appeared in 2008
in a paper by Satoshi Nakamoto [26] as Bitcoin, along with a reference implementation in C++.
It didn’t take long until a community of enthusiasts and cryptographers embraced the technology
and started studying it and using it extensively. New cryptocurrencies based on Bitcoin’s ideas
and codebase started popping up, among them most notably Litecoin and Dogecoin.

This work clearly was a huge inspiration. In 2014 Ethereum [5, 32] appeared, which aimed to
do much more than just value transfers: it built on Nakamoto’s ideas in order to build a world
computer. Programs called smart contracts could be stored and run in a decentralized manner.
Such smart contracts gave us the ability to write immutable contracts, where “code is law.”

Few years later and the landscape is completely changed. More and more cryptocurrencies are
created every single day. Public interest and prices have skyrocketed. There is lots of optimism
about the future decentralized technologies such as Bitcoin can bring, mainly a democratization
of money, usually called “banking the unbanked.”

However, being more widespread and popular surfaced some problems the most important of
which is scalability. Technically, each cryptocurrency has a blockchain, which is literally a chain
of blocks linked together like a linked list. These blocks contain transactions. Every transaction
needs to be recorded and stored in a block, and everyone has to know about it. As a result, the
Bitcoin blockchain is 185GB at the time of writing. The Ethereum blockchain comes up to 667GB.
Typically, for someone to participate on the network, and do actions like send transactions they
have to download the whole blockchain. However at such rates it is very time-consuming and
resource-intensive or even impossible for someone to download a chain. So-called lite nodes that
don’t need to download the whole chain do exist, but at best they need information linear in the
size of the chain, so they’re a constant-factor improvement.

New cryptocurrencies with interesting features pop up all the time. There’s long been an
interest in implementing sidechains [2], as a way to interoperate between two blockchains. One
should be able to trustlessly transfer his Bitcoin to another chain and use it there (a one-way
peg), and transfer it back if he so desires (a two-way peg). One-way pegs have been implemented
by having a smart contract on a cryptocurrency like Ethereum which knows the full state of the
other blockchain, much like a full node. However storage comes at a huge cost, which makes the
hundreds of GBs of most blockchains infeasible to maintain.

There’s also the issue of user experience: even using a lite node at this point is too slow. Lite
nodes use a protocol called SPV which we’ll look into detail shortly. SPV works by relaying only
the block headers (which are of constant size) to the lite nodes and specifically any transactions
they might suspect will interest them. Even so, the Dogecoin blockchain headers come up to
188MB. On an Android phone using the Dogecoin app, it takes about an hour before the app can
be used, and this is assuming good network conditions. Trying to use such clients on a data plan
could potentially make them completely unusable.

NIPoPoWs [18] are a recent blockchain primitive allowing proofs on the blockchain of only

1



logarithmic size instead of linear. These succinct proofs turn out to be key in solving problems
like the above. One-way pegged contracts don’t need to know about the whole blockchain, and
lite nodes don’t need to know all block headers to have the same security assurances.

1.2 Related Work
The first solution for short proofs came directly from the original Bitcoin paper [26] in the form of
SPV. The main idea of SPV, Merkle Tree Proofs, which we will be studying in depth shortly, is
very useful for transaction inclusion proofs with NIPoPoWs as well.

Although NIPoPoWs are a very recent development, implementations have already been de-
veloped. Most notably, a verifier smart contract has been developed by Christoglou [7], which
validates and compares NIPoPoW proofs to find the best, and can be used as a basis for cross-
chain transactions. This implementation however assumes proofs on a blockchain which contains
the interlink on its headers, which is something untrue for most popular cryptocurrencies.

There are however cryptocurrencies of this form built from the ground up with NIPoPoWs in
mind. Most notably, Ergo [6], Nimiq [29] and WebDollar [30].

1.3 Structure
In Chapter 2 we will outline some cryptographic primitives which are used by Bitcoin, NIPoPoWs
or our implementations. We will explain how Bitcoin works and introduce our model for proofs.
We will then explore NIPoPoWs and finally Velvet Forks.

Then in Chapter 3 we will investigate what assumptions we have to make in order to implement
NIPoPoWs on Bitcoin Cash. We will focus on what changes have to be made and analyze our
interlinker implementations.

In Chapter 4 we will explore how to generate proofs from our newly velvet forked chain. We
will also analyze our prover implementation.

Finally, in Chapter 5 we will look at potential applications where our proofs can be used.
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Chapter 2

Background

2.1 Primitives
2.1.1 Cryptographic Hash Functions
A hash function is a function used to map data of arbitrary size to data of a fixed size. Formally,
a hash function H is of the form H : D → [0, 2κ), where κ is a characteristic of H, specifically the
number of bits of its output.

For a hash function to be a cryptographic hash function it has to satisfy the following properties
[21]:

• Pre-image resistance: Given a hash of h it should be difficult to compute an input m such
that H(m) = h.

• Second pre-image resistance: Given an input m1 it should be difficult to compute an
input m2 such that H(m1) = H(m2).

• Collision resistance: It should be difficult to compute two inputs m1 and m2 such that
H(m1) = H(m2).

Bitcoin utilizes two hash functions, SHA256 (κ = 256) and RIPEMD160 (κ = 160).
This work and the works it is based on [18] operate within the random oracle model, where a

hash function is assumed to be a truly random function [21].

2.1.2 Public-key Signatures
Each user is assumed to have a key pair composed of a public key which can be shared freely and
a private key which should be kept secret. A public-key cryptographic system should implement
the following operations for signatures [21]:

• Sigsk(m)

• V erpk(m) where ∀m : ∀sig : V erpk(sig) = True → sig = Sigsk(m) and it is difficult for
someone without pk to create such a sig

Bitcoin utilizes ECDSA [28], which is based on elliptic curves, as its public-key cryptography
implementation.

2.1.3 Merkle Trees
A Merkle tree [24] is a data structure which allows a party to commit to a set of items using only
a single hash, and prove the inclusion of any item in the committed set by providing a logarithmic
proof in terms of the cardinality of the set.

More specifically, the hashes of the items consist the leafs of the tree, and the last level. The
internal levels are defined recursively as follows: To create level k− 1 each pair of level k (A,B) is
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Figure 2.1: A Bitcoin Merkle tree. Source: [1]

transformed as a node of value H(A||B) which points to both A and B. If the number of nodes at
level k is odd, the last node at that level is paired with itself. 1

Merkle trees are useful in Bitcoin in order to commit to a set of transactions to be included in
a block while keeping the block header of a constant size as we will see shortly.

To provide proof of inclusion, all a prover has to do is provide a path of siblings up to the
root siblings and a bit vector left indicating whether each sibling is on the left or the right. The
verification process is shown in Algorithm 1.

Algorithm 1 The Verify algorithm for a Merkle proof
1: function Verifyroot(leaf, siblings, left)
2: currentHash← leaf
3: while left 6= [] do
4: siblingIsLeft← left.shift()
5: if siblingIsLeft then
6: currentHash← H(siblings.shift()||currentHash)
7: else
8: currentHash← H(currentHash||siblings.shift())
9: end if

10: end while
11: return currentHash = root
12: end function

An example of a Bitcoin Merkle tree, along with a proof of inclusion for K can be seen on
Figure 2.1.

2.1.4 Bloom Filters
A bloom filter is a probabilistic data structure allowing queries for set inclusion [4]. Specifically, a
set of items is transformed to a bit vector size m. Starting from an empty bit vector of all zeroes,
let us examine how we change the bit vector to indicate that an element is included in the set. Let
us assume that we have k hash functions h1, . . . , hk, where ∀x∀i ∈ [0, k] : hi(x) ∈ [0,m− 1].

The algorithm for item insertion seen in Algorithm 2 gets k values from all the hash functions
on the new item, and then uses those values as indices. Every index indicates a bit that will be
turned on in the new array. The new bloom filter is then returned.

1This specific construction is the one Bitcoin implements. There are various other constructions which are not
inside the scope of this paper.
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Figure 2.2: A Bitcoin address

OP HASH256
6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000

OP EQUAL

Figure 2.3: A Bitcoin script

Algorithm 2 The Insert algorithm for a Bloom Filter.
1: function Insert(vec, item)
2: for i← 1 to k do
3: vec[hi(item)]← 1
4: end for
5: return vec
6: end function

Testing a bloom filter for inclusion of an item is equally easy, as seen on Algorithm 3. The
item again passes through the k hash function and the algorithm returns true if and only if all the
indices pointed out by the k outputs are 1 bits on the array. It should be obvious however that
there may be false positives, which is why it is necessary for an extra step in case one needs to be
certain that the item is really included in the set.

Algorithm 3 The Query algorithm for a Bloom Filter. May return false positives.
1: function Query(vec, item)
2: flag← 1
3: for i← 1 to k do
4: if vec[hi(item)] 6= 1 then
5: return False
6: end if
7: end for
8: return True
9: end function

2.2 Bitcoin
Bitcoin was invented in 2008 by Satoshi Nakamoto [26] as a peer-to-peer version of electronic cash,
allowing online payments to be sent directly between parties without the need of a intermediary.

Bitcoin is pseudonymous: the identity of each user is only their address, which corresponds to
an ECDSA public key. This address can be used to receive money from other users. Each user
can spend money only if they have their corresponding private key. A set of ECDSA keypairs
comprises a wallet. A user can have multiple addresses.

Transfer of value in Bitcoin happens with transactions. A transaction has inputs and outputs.
An output is where the value creation happens for the receiver. An output can be later redeemed
by using its designated receiver’s private key and turned into an input to be used for another
transaction.

2.2.1 Scripts
Bitcoin offers much more than just moving currency around. It allows us to actually move currency
conditionally, where the condition can be expressed as a Bitcoin script. Bitcoin script is a stack-
based language [28]. An example of a Bitcoin script can be seen on Figure 2.3.

This is an interesting script because it introduces two kinds of operations. First is commands
prefixed with OP (called opcodes): these perform operations on values (usually the top 1 or 2) on
the stack and push the result to the stack. Specifically, OP HASH256 calculates the SHA256 hash
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of the value on the top of the stack (and pushes the result on the stack). OP EQUALS compares the
top 2 values on the stack and pushes 1 or 0 if they are indeed equal or not accordingly. Values like
6fe... in hex with no OP prefix are simply pushed to the stack.

So what does this script do? It checks if the value on the stack is the preimage of the given
hash. If we do push the correct preimage in the stack before running the script, the result is going
to be 1, letting us know that the evaluation was successful.

Such a script express our predicate, and is called a pubKeyScript. However the predicate must
run on something. In our example above we assumed the preimage was on the stack before the
stack ran, and this is how we parameterized our predicate. The way this is done in Bitcoin is
running another script before the predicate called scriptSig, to essentially pass the parameters to
our predicate. We’ll see shortly how these can be leveraged to actually transfer funds.

It’s important to note that there’s a third type of opcodes which can fail the script preemptively.
These opcodes are usually in the form of OP ...VERIFY. An example is OP EQUALVERIFY which
fails the script if the top 2 values of the stack are not equal, and is otherwise a no-op.

Next we’ll look at a couple of interesting classes of scripts.

Anyone-can-spend
It’s easy to make the predicate true for everyone. We can make pubKeyScript be OP TRUE (which
adds the true value to the stack) and scriptSig be empty.

P2PKH
This is the standard script for conventional fund transfer in Bitcoin. Let’s say we want to make sure
only Bob can satisfy this script. The pubKeyScript is the following: OP DUP OP HASH160 <Bob’s
address> OP EQUALVERIFY OP CHECKSIG.

The scriptSig is then typically <Bob’s signature> <Bob’s public key>. Values in <> are
placeholders for actual values, they’re not valid script commands. These have to be replaced with
concrete values before the above scripts can be valid.

Bob’s signature will be on the hash of the transaction (which we’ll explore shortly) containing
the output. The script will then duplicate his public key, check that it matches the one on the
pubKeyScript, and if it does check that he has provided a valid signature with that public key. If
all these checks pass the stack will end up with 1 on top and the execution will be valid, thus the
predicate will be satisfied.

OP RETURNs
It frequently is desired to add arbitrary data to the blockchain (e.g. for timestamping). To do this,
one can make the arbitrary data part of the pubKeyScript. There’s a special opcode for such cases
called OP RETURN which can be followed by a series of arbitrary data (in hexadecimal). OP RETURN
fails the script preemptively so no scriptSig can satisfy it. We’ll see how based on OP RETURNs
we can greatly augment the functionality of Bitcoin later on.

2.2.2 Outputs
An output is a tuple (value, pubKeyScript). The value refers to an amount of Bitcoin in Satoshi
(where 108 Satoshi = 1 Bitcoin) and pubKeyScript is a script which needs to be run against some
stack and return 1 in order for value to be transferable.

2.2.3 Inputs
An input is the way an output is redeemed. Specifically, it contains 3 things:

• The hash of the transaction where the output of interest is contained.

• An index clarifying which output in the transaction this input is referring to.

• A signature (called scriptSig) used for the validation of the output script.

6



Figure 2.4: Transactions with their inputs and outputs. Source: [1]

For the transaction to be valid, the script inside the specified output when run on a stack with
the contents of scriptSig should return 1.

As a convention, when we talk about the value of an input we mean the value of the output it
redeems.

2.2.4 Transactions
A transaction is a collection of inputs and outputs. It uses the sum of the inputs values’ as credit
to debit each output accordingly. As it makes sense, a transaction is only valid as long as all its
outputs and inputs are valid. It should also be clear that the value of the outputs should not exceed
the value of the inputs, otherwise we would be creating value out of thin air with new transactions.
Specifically this is expressed as

∑
i∈inputs i.value ≥

∑
o∈outputs o.value. This is sometimes called the

Law of Conservation.
In cases where

∑
i∈inputs i.value >

∑
o∈outputs o.value we call∑

i∈inputs
i.value−

∑
o∈outputs

o.value

the transaction fee. This is paid to the miner who successfully mines a block containing the
transaction. This is one of the two ways Bitcoin uses to incentivize miners.

2.2.5 Blocks
A block contains a list of transactions, the first of which is called the coinbase transaction which
is where value creation happens in Bitcoin. The miner crafts this transaction granting them some
amount of Bitcoins and this transaction is going to be valid only if the block turns out valid. This
doesn’t mean that anyone can generate Bitcoin out of thin air: we’ll see shortly how it actually
comes at a cost with Proof-of-Work.

A block header contains mainly the hash of the previous block, a Merkle root hash to commit
to a set of transactions, and a nonce. Blocks are always referenced by the hash of their block
header.

Once a transaction has been included in a valid block it’s called confirmed.
It’s possible that there are contending chains of blocks. We then say there is a fork on the

chain. On Figure 2.6, the chain has forked on blocks 3 and 6.
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Simplified Bitcoin Block Chain

Block 1
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Block Header
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Transactions

Hash Of Previous
Block Header

Merkle Root

Figure 2.5: The block structure. Source: [26]

Figure 2.6: A block chain. The orange blocks are orphans. Source: [1]

We call any valid blocks which are not part of our active chain orphans. For example, on
Figure 2.6, blocks 4b, 7a and 8a are orphans.

2.2.6 Proof-of-Work
The key to making Bitcoin decentralized is a technique called Proof-of-Work. Proof-of-Work was
first invented in 1992 by Dwork et al. [9] as a measure of limiting email spam and denial-of-service
attacks and later explored by Back [3] as Hashcash.

We’ll examine a simplified model of Hashcash in order to explore the idea. Suppose we want
to send an email to someone. In order to prove we’ve done work, we include a header (like
X-Hashcash), which (very simplistically) includes the receiver’s email address, and a nonce. 2 The
nonce is picked so that the hash of the header H(email||nonce) has its 20 most significant bits be
all 0. The only feasible way to find this is by brute-forcing the nonce. Once the sender has found
the nonce it’s included in the header and sent.

The receiver can then very easily check whether the header hashes to a valid value. If that’s
so, the email it contains belongs to the receiver and the header is not being reused, then the email
can be considered not spam.

To reiterate, the idea is having a series of data to commit to and a hole for the nonce, which
is brute-forced to satisfy a necessary predicate on the hash, specifically that its n most significant
bits are all zeroes. This is exactly how Bitcoin implements Proof-of-Work. Instead of the hole
being on an email header the hole is on the block header. For a block to be valid, its header has
to satisfy a predicate like the above.

Bitcoin introduces a couple of differences. n varies according to the block generation rate.
Specifically, to translate the previous predicate to Bitcoin terminology, the hash of each block
header has to satisfy H(blockHeader) ≤ T where T is called the target. As the target goes up,
the probability of being below it goes up and generating a valid block is easier. Conversely, if the

2Hashcash headers actually contain 7 different fields which have been omitted here for simplicity. The simplified
version explained here is not making the same security guarantees as Hashcash.
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target goes down it’s harder to generate a valid block. To express this, in Bitcoin 1
T is called the

difficulty.
To account for the block generation rate, which Bitcoin tries to keep to 1 block per 10 minutes,

every 2016 blocks the target (and subsequently the difficulty) is adjusted accordingly. The target
is calculated inside the Bitcoin software and is only as a function of the blocks previously seen
(frequently called their view), so as long as the Bitcoin nodes agree on the view they’ll agree on
the target and all consider the same set of incoming blocks as valid.

2.2.7 Simplified Payment Verification
The size of the blockchain has reached 185GB by September 2018, which makes it a very time con-
suming or even infeasible process to synchronise a full node. Fortunately, a solution was proposed
in the original whitepaper [26], which allows the creation of so-called lite nodes. Lite nodes only
know the headers of the entire blockchain, which are constant-size for each block (80 bytes). At
the time of writing of this paper, the size of all block headers was ∼42MB. The lite node then asks
the network for transactions concerning it (e.g. transactions concerning a specific public key). Full
nodes of the network find such transactions and return them to the requester. For each transac-
tion, the block header of the block it’s included in is returned, along with a Merkle tree proof of
inclusion which the lite node can then verify. This protocol is reliable as long as an adversary does
not control the network of a lite node.

2.2.8 Bitcoin Cash
In 2017 Bitcoin faced severe scalability issues [8]. Its limited 1MB block size meant that it could
only support a maximum of 7 transactions per second. As Bitcoin’s popularity had exploded at
the time, the problem was hugely exacerbated. The most prominently proposed solution for this
was a block size increase, however no consensus was reached. The discussions ended with a fork of
the main Bitcoin chain which allowed for 8MB blocks, called Bitcoin Cash.

2.3 The Prover-Verifier Model
Before we talk about the specifics of proofs we first have to define our setting. In our setting we
have two kinds of actors, provers and verifiers.

A verifier is a party who wishes to know something about our blockchain. It’s assumed it
doesn’t have network access (i.e. it can’t be a full node). A verifier can be thought of as a Turing
Machine which takes one or more proofs as input, and then determines whether a predicate is true
or not. The only information the verifier knows is the genesis id of the chain it wants to decide
predicates on.

Provers are parties with access to the Bitcoin network, the longest chain and all the transactions.
They wish to communicate to the verifier and convince them about a predicate.

We distinguish provers as honest and malicious. An honest prover will generate proofs which
are true according to the state of the chain he is aware of. A malicious prover may try to submit
false proofs in order to gain some advantage. For example, a verifier may be a merchant, who,
upon confirming that his client, Bob, has paid for a product will ship it to them. In this case it is
in the best interest of Bob to submit a malicious proof which makes it appear like he has paid for
the product when in reality he has not.

2.3.1 Single-Prover Proofs
There are many interesting statements a verifier can be certain about by utilizing only a single
prover. We say that a chain is valid iff it is structurally sound, which we also call traversable.

Chain Validity Proof
Suppose we have a chain C and we wish to prove to the verifier that it is a valid chain. It is easy to
do this by supplying the whole chain to the verifier, who can sequentially, starting from the newest
block, verify that the previous block hashes to the hash found on the newest block’s previd. The
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process can be repeated until the genesis block is reached where the verifier can accept the chain
as valid.

Transaction Inclusion In Selected Block Proof
If we have a transaction tx which we wish to prove exists in a block B, then we can just generate
a Merkle proof for the inclusion of the transaction’s id. Given B, tx and the Merkle proof, the
verifier can then verify the Merkle proof against the Merkle tree root inside the header of B to
confirm that tx ∈ B.

Transaction Inclusion In A Valid Chain Proof
In order to prove that a transaction tx is included in some valid chain we can very easily combine
the above proofs. Suppose that tx ∈ B. Then by providing a chain validity proof for the chain
that contains B and a transaction inclusion proof for B, the verifier can accept if and only if both
proofs are valid and the chain provided includes B.

It is important to note that our definition of validity is less strict than a full node’s definition
of validity. As a full node, it is possible to check that every transaction in a block is valid, and
if and only if this is true, and the block is well-formed and valid under Proof-of-Work consider a
block valid.

2.3.2 Multi-Prover Proofs
However, while a single prover is enough for some types of proofs, some are impossible to achieve
without multiple provers. For example, convincing a verifier that we hold the longest Bitcoin chain
would be impossible to do, because a prover could very easily be malicious and present a shorter
chain. Without taking extra input from other provers and assuming that there exists at least one
honest prover, it is impossible for a verifier to be certain. Those are two assumptions we will make
for the following proofs.

Longest Chain Proof
Suppose we have a chain C and we wish to prove to the verifier that it is the longest chain. We
submit the whole chain to the prover, as do the rest of the provers. The verifier then verifies each
given chain for validity and discards any invalid chains. For the remaining chains it compares them
and keeps the longest one.

Transaction Inclusion In The Longest Chain
As previously, suppose tx ∈ B. We provide the whole chain, along with the Merkle proof for
tx ∈ B. The verifier collects proofs of this kind and selects the longest valid chain. Then for all
transaction inclusion proofs taken it checks whether the claimed block is included in the longest
chain and the transaction inclusion proof is valid. If there is at least one transaction inclusion
proof satisfying this requirement then the transaction is accepted, otherwise it is rejected.

Verifying this kind of proof is very similar to the operations a lite node does to verify transactions
claimed to be on the longest chain that we viewed in Section 2.2.7, which is why these proofs are
called SPV proofs. These proofs are all linear in the size of the chain.

2.4 Non-Interactive Proofs of Proofs of Work
Seeing that proofs are linear in the chain length, it is natural to consider if we can do better.
NIPoPoW [18] provides the first family of succinct proofs which are logarithmic in the size of the
chain and proven secure in the Backbone [10] protocol.

There have been previous attempts to create proofs smaller in size than SPV proofs [17], where
a scheme for logarithmic proofs was proposed. This scheme was later proven insecure [18].
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T 1110000
id(B) 0001000

Table 2.1: Calculating the level of a block by counting the leading zeros (3 in this case).

Figure 2.7: The hierarchical blockchain. Higher levels have achieved a lower target (higher diffi-
culty) during mining. All blocks are connected to the genesis block G. Source: [18]

2.4.1 Terminology
NIPoPoWs are categorized in two kinds of proofs:

• We have a valid chain where the last k blocks (also called the unstable part of the chain) are
the ones we’re claiming. This is called a suffix proof.

• We have a valid chain where a specific given block is included in its stable part (excluding
the last k blocks). This is called an infix proof.

2.4.2 Assumptions
An assumption NIPoPoWs make is that the difficulty is constant. This is not true for Bitcoin or
Bitcoin Cash.

NIPoPoWs also assume each block contains an interlink data structure, which we’ll study
shortly. Interlinks too don’t exist in Bitcoin or Bitcoin Cash.

In the next section we’ll look at how we sidestep all those issues.

2.4.3 Levels
At the heart of the primitive lies the separation of blocks into levels. The level of a block is
defined as level(B) = blog(T )− log(id(B))c, where T is the constant difficulty of the blockchain.
The genesis block is an exception to this rule as level(Gen) = ∞. We call a block of level µ a
µ-superblock.

Intuitively, the level of a block is the number of leading zeros of the binary representation of
the block id when left padded to the length of T . An example of this can be seen on Table 2.1.

Figure 2.7 shows an example the implied blockchain created from the superblocks.

2.4.4 Notation
The NIPoPoWs paper introduces some notation for talking about blockchains with levels which
we’ll be using extensively. The notation is widely influenced by Python. Specifically:

• C denotes a blockchain, with C[0] being the genesis block, C[k] being the k-th first block and
C[−k] being the k-th last block.

• C[k :] denotes the sub-blockchain starting from the k-th block, C[−k :] denotes the sub-
blockchain starting from the k-th last block.

• C[: k] denotes the sub-blockchain ending before the k-th block, C[: −k] denotes the sub-
blockchain ending before the k-th last block.
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Level Block
0 C[−2]
1 C[−2]
2 C[−4]
3 C[−8]
∞ C[0]

Table 2.2: Interlink of C[−1] from Figure 2.7

• C[i : j] denotes the sub-blockchain starting from the i-th block and ending at the j-th block.
i and j can also be negative numbers similar to above.

• C{B :} denotes the sub-blockchain starting from the block with block id B.

• C↑µ denotes the sub-blockchain of C where all blocks are of level µ or higher.

2.4.5 Interlink
Instead of keeping only the hash of the previous block inside the block header, for every superblock
level we keep a pointer to the most recent superblock of that level. The structure containing these
pointers is called the interlink. Bitcoin does not support such a structure in the block header but
we will study how to sidestep this issue by velvet forking in a few sections.

It’s important to note that the interlink can be encoded as a series of block ids, starting from
0 up to ∞. It can also be compressed by using this series as the leafs of a Merkle tree and taking
the Merkle tree root.

Suppose we have a block B′ with an interlink stored as B′.interlink. In order to produce the
interlink for a block after B′ we make sure to change all pointers from level 0 up to level(B′) to
point to B′, as B′ will be the most recent block at these levels (remember that a block of level
µ is also of level µ − 1). We call this procedure updateInterlink, which can be seen in detail on
Algorithm 4.

Algorithm 4 updateInterlink
1: function updateInterlink(B′)
2: interlink← B′.interlink
3: for µ = 0 to level(B′) do
4: interlink[µ]← id(B′)
5: end for
6: return interlink
7: end function

2.4.6 Suffix Proofs
Suffix proofs are parameterized by k and m. k refers to the number of blocks that need to bury a
block for it to be considered stable.

A suffix proof of a chain C is constituted of two chains, π and χ. The final proof is the
concatenation of those two chains πχ. χ always refers to the chain of unstable blocks and is
evaluated as χ = C[−k :].

The process for constructing π is a little more convoluted. First we have to find the first level
µ where |C↑µ | ≥ m. We call this level maxµ. For this level we take all its blocks except for
the last m: πmaxµ = C↑µ [: −m]. Then for every level µ from maxµ − 1 to 0, we take blocks
πµ = C↑µ [: −m]{C↑µ+1 [−m] :}.

π is then evaluated as the concatenation of all those chains starting from the oldest block:

π = πmaxµ||πmaxµ−1|| . . . ||π0
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Figure 2.8: Construction of π of a suffix proof. m = 3 Source: [18]
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Figure 2.9: Construction of an infix proof. Source: [18]

It’s important to notice that the chain provided to the verifier is an actual chain: one can start
at the end and traverse it until the genesis block by utilizing the interlink of each block, similar to
how they would do that on a conventional blockchain by using each block’s previd.

2.4.7 Infix Proofs
For the verifier to be able to determine a predicate on one or more blocks (C′ ⊆ C) of our chain,
we have to make sure we include them in a proof. A suffix proof is not guaranteed to include all
blocks of interest in C′. In order to include these we have to make sure they are linked to the proof,
e.g. that the proof chain is a traversable. To this end, let’s assume some arbitrary block B ∈ C′.
Let’s also assume an existing suffix proof πχ. We find blocks E′ and E on the suffix proof, such
that:

• E is the next block after E′ on the proof

• B comes before E on C

• B comes after E′ on C

An example of such a triplet of blocks satisfying those conditions can be seen on Figure 2.9.
We then perform a procedure called followDown in order to figure out which blocks need to be

added to the proof in order to link E to B. followDown includes blocks on intermediate levels until
B is reached. The full algorithm can be seen on Algorithm 5.
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Algorithm 5 The followDown function which produces the necessary blocks to connect a su-
perblock E to a preceeding regular block B. Source: [18]

1: function followDown(E, B, height)
2: aux← ∅; µ← level(E)
3: while E 6= B do
4: B′ ← blockById[E.interlink[µ]]
5: if height[B′] < height[B] then
6: µ← µ− 1
7: else
8: aux← aux ∪ {E}
9: E ← B′

10: end if
11: end while
12: return aux
13: end function

Augmenting the original suffix proof with the new blocks provided by followDown on all our
blocks of interest B ∈ C′ gives us our final infix proof. Note that as was the case with our suffix
proofs, the infix proof is traversable.

2.4.8 Proof Validation
It is very easy to validate a proof, similarly to how we validated SPV proofs in the previous chapter:
one can just check that the proof is traversable up to a known genesis, and |χ| = k. Validation in
the context of NIPoPoWs refers to a single-prover environment.

2.4.9 Suffix Proof Verification
In a multi-prover environment, we noted the need for a way to compare proofs. For SPV proofs
this was easy, the length of each chain could be compared (as long as both chains were valid).
For NIPoPoWs however the process of comparing is not as straightforward, if we consider that the
number of blocks is not directly connected to chain length.

In Algorithm 6 we show how two proofs can be compared. The algorithm finds the Lowest
Common Ancestor b from the stable part of both proofs, and then calculates best-arg on each
proof from b onwards. The proof with the largest best-arg is decided to be the better proof.

Algorithm 6 The algorithm implementation for the ≥m operator to compare two proofs in the
NIPoPoW protocol parameterized with security parameter m. Returns true if the underlying chain
of player A is deemed longer than the underlying chain of player B. Source: NIPoPoWs paper [18]

1: function best-argm(π, b)
2: M ← {µ : |π↑µ {b :}| ≥ m} ∪ {0} . Valid levels
3: return maxµ∈M{2µ · |π↑µ {b :}|} . Score for level
4: end function
5: operator πA ≥m πB
6: b← (πA ∩ πB)[−1] . LCA
7: return best-argm(πA, b) ≥ best-argm(πB , b)
8: end operator

Knowing how to compare two proofs, the only thing a verifier has to do is actually compare all
the proofs it receives (which are collected in the set P) and only keep the best one. This is shown
in Algorithm 7. As an extra step, after picking the best proof (π̃, χ̃), this verifier for suffix proofs
evaluates a predicate Q̃ on the suffix, or unstable part of the best proof it received.
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Algorithm 7 The Verify algorithm for the NIPoPoW protocol. Source: NIPoPoWs paper [18]
1: function VerifyQm,k(P)
2: π̃ ← (Gen) . Trivial anchored blockchain
3: for (π, χ) ∈ P do . Examine each proof (π, χ) in P
4: if validChain(πχ) ∧ |χ| = k ∧ π ≥m π̃ then
5: π̃ ← π
6: χ̃← χ . Update current best
7: end if
8: end for
9: return Q̃(χ̃)

10: end function

2.4.10 Velvet Forks
Velvet forks [18,33] describe a formalization of adding arbitrary data inside blocks in order to allow
potential applications without sacrificing the backwards compatibility of the blockchain.

Miners who are willing to contribute to the fork can add data of interest in the form of coinbase
transaction data.

Backwards compatibility is achieved by not changing the consensus rules, meaning that set of
acceptable blocks does not change. So any block that was acceptable remains acceptable even if it
does not contain any data concerning the fork, or if it contains invalid data.

2.4.11 User-Activated Velvet Forks
In case miners aren’t interested in including such data, users can also create such a fork by making
a kind of transaction called velvet transaction. In a velvet transaction a user includes any data of
interest in unspendable transaction outputs (like OP RETURN).

For the consumer of such data, the only difference is that they have to look inside the whole
block to find it, not only inside the coinbase data.

Such forks come at the cost of making such transactions, because the user who makes the fork
needs to pay transaction fees every time they wish to add data to the blockchain.

2.4.12 Velvet NIPoPoWs
Since anyone can post such transactions on the blockchain, we have to make sure that the com-
mitment is actually true before we can use it. In order to do that we maintain our own version
of the interlink for each block which we know is correct called realLink. Then for every block, we
compare its commitments (there may be many) with the Merkle Tree root of our realLink. If there
is a valid commitment we say that the block has a valid interlink. We store the full interlink as
realLink[id(block)].

We already know how it’s essential that our proof forms a blockchain that can be traversed
from start to end. In order to make our proof traversable, whenever we include a block we have to
make sure it connects validly to the previous one either by (a) using the regular previd inside the
block or (b) using a valid interlink. If we use the previd to link back to the previous block then all
the information someone needs to verify the traversability is already there and we don’t need to
add anything extra. In the case we use the interlink however, we need to provide the Merkle Tree
proofs for:

• The transaction containing the valid interlink commitment.

• The interlink level we use for the connection.

If our chain is not traversable the proof is automatically invalid.
We’ll now look at the concrete implementation of the prover.
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2.4.13 Invalid Interlink Handling
The original NIPoPoWs paper [18] gives us some insight into how to handle blocks with invalid
interlinks. Let’s look at where we need to make changes starting with suffix proofs.

For suffix proofs we need a way to obtain the upchain of a chain, denoted as C↑µ. We will now
define a procedure to programatically obtain the upchain of a chain called findC↑µ.

followUp
followUp takes a block b and a level µ as parameters. Starting from b it traverses the chain until it
reaches another block of level µ called B. In doing so, it is only allowed to use valid pointers. It
will only follow a pointer from a block’s interlink at level µ if there is a valid interlink in that block.
Otherwise, the only option is to follow the previous block pointer (previd). Once B is reached, it
is returned alongside the blocks that were traversed as a blockset called aux.

Algorithm 8 followUp produces the blocks to connect two superblocks in velvet forks.
1: function followUp(B, µ, realLink, blockById)
2: aux← {B}
3: while B 6= Gen do
4: if B.interlink[µ] = realLink[id(B)][µ] then
5: id← B.interlink[µ]
6: else . Invalid interlink
7: id← B.previd
8: end if
9: B ← blockById[id]

10: aux← aux ∪ {B}
11: if level(B) = µ then
12: return B, aux
13: end if
14: end while
15: return B, aux
16: end function

findC↑µ

Now that we have a way to go back on a level, we can utilize it to construct the entire traversable
level µ up to block b, starting from the end of the chain C[−1]: this is what findC↑µ(b) accomplishes.
It works by repeatedly calling followUp on the oldest block it has and including the result in its
final chain.

Algorithm 9 Supplying the necessary data to calculate a connected C↑µ during a velvet fork.
1: function find C↑µ(b, realLink, blockById)
2: B ← C[−1]
3: aux← {B}
4: π ← [ ]
5: if level(B) ≥ µ then
6: π ← πB
7: end if
8: while B 6= b do
9: (B, aux’) ← followUp(B,µ, realLink, blockById)

10: aux← aux ∪ aux’
11: π ← πB
12: end while
13: return π, aux
14: end function
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Velvet Infix Proofs
The infix prover also changes to account for invalid or nonexistent interlinks. On followDown we
have to make sure that any interlinks we use are valid. Thus, for any block with an invalid interlink
we are forced to use its previd instead to find its previous block, in hopes that the previous block
will contain a usable interlink.
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Chapter 3

Velvet Fork Implementation

Now that we have seen how NIPoPoWs work and what options we have in our disposal to deploy
them to existing blockchains, we will investigate how we implemented NIPoPoWs on Bitcoin Cash.

Since Bitcoin Cash blocks don’t contain the interlink we have to utilize a velvet fork. We
could choose a regular velvet fork. A regular velvet fork would require for a miner minority to
exist and run code which would add the interlink inside the coinbase transaction. Finding and
contacting miners would require a lot of non-technical work and persuasion. It would also mean
that probably only a minority of the blocks would be validly interlinked. Seeing that persuading
miners would require a lot of work and would not bring an ideal outcome we decided to implement
a User-Activated Velvet Fork instead.

To this end, we need to make sure that a transaction is included in every single block containing
its implied interlink. We do this by implementing a service which for every new block, calculates
the expected interlink of the upcoming block and sends a transaction including this interlink in
hopes that it will be included in the upcoming block. If this is indeed achieved then that block will
indeed contain its valid interlink. We henceforth call the service which does this an interlinker.
An example of blocks and their corresponding interlinks can be seen on Figure 3.1.

3.1 Picking a Velvet Genesis
Naturally one would expect the interlink to start from the real blockchain genesis as it would
enable proofs for any already existing block of that blockchain. However, for older blocks there
can be no improvement. There is no other option than providing the full chain as a proof since no
older blocks contain any interlinks. Thus in order to avoid accounting in our interlink for blocks
in the past that can only be connected to the real genesis by supplying the full chain we choose a
new genesis called the velvet genesis. For our purposes in Bitcoin Cash testnet we chose the block
with height 1257603 as our velvet genesis.

3.2 Faking Constant Difficulty
An issue with NIPoPoWs we mentioned early on, which makes them incompatible with Bitcoin
is that a constant difficulty setting is assumed. Bitcoin and Bitcoin Cash, like most well-known
cryptocurrencies have variable difficulty. Although research for NIPoPoWs in the variable difficulty
setting is currently underway, no clear solution exists yet. For our purposes we treat the variable
difficulty blockchain as if it was a constant difficulty chain with Tconst = powLimit, where powLimit
is the maximum target that can be achieved in the variable difficulty chain. Assuming such
a target means that all the valid blocks under variable difficulty are also valid under the fake
constant difficulty, since ∀B : id(B) ≤ T ≤ powLimit = Tconst. 1

It is trivial to determine powLimit for any cryptocurrency, as it is hardcoded in the source code
of any full node. Here is an example from the Litecoin source code.

1This is the most reasonable construction according to the NIPoPoWs paper authors. We do not claim or prove
that this construction is secure.
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Figure 3.1: Example of blocks with their corresponding interlinks for T = 100000. Note that for
the upcoming block marked with ? we can produce its interlink without knowing its hash.

1 class CMainParams : public CChainParams {
2 public:
3 CMainParams() {
4 strNetworkID = "main";
5 // ...
6 consensus.powLimit =

uint256S("00000fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff");
7 // ...
8 }
9 }

3.3 Interlink encoding
We now have to consider our options for representing the interlink. Bitcoin Cash uses SHA-256 for
the block hashes, meaning that each block id consists of 32 bytes. A naive encoding would be one
where each 32-byte block hash from level 0 up to ∞ is concatenated, with the ∞ pointer always
pointing to the genesis block.. For 35 levels, which according to Figure 3.2 is a reasonable figure,
this encoding would take approximately 1.12KB. Considering that OP RETURN scripts are limited
in size to 223 bytes, this would only allow us to include up to 6 pointers at best.

Putting this limitation aside, the fee of the transaction is proportional to the transaction size,
and since we’re going to be sending a transaction for every block (which is mined approximately
every 10 minutes), it is important that the fee is minimized.

Thus in order to save space, we only include a commitment to the interlink in our transactions.
Specifically, we take the Merkle Tree root of the Merkle Tree with leafs the block hashes starting
from level 0 up to ∞. This way, our interlink encoding is constant size and we can easily provide
compact proofs for any of the levels.

3.4 Discoverability
We’ve talked about how just including the interlink somewhere on a block is what really matters
but it is crucial that we make this information easy to discover. We achieve this in two ways. First,
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Figure 3.2: Number of levels assuming our selected velvet genesis.

we include the interlink commitment inside a special OP RETURN output. Such outputs are already
being used for storing arbitrary data in blocks [22] therefore we adopt this method for storing our
interlinks. Second, we aim to make this interlink discoverable for lite nodes, so we don’t require
our users to download a whole block in order to look into it. We achieve this by utilizing a method
called SPV tagged outputs [13].

SPV tagged outputs are outputs that are tagged so that they can be discovered by SPV
nodes who add the “tag” to the filter. Specifically, we form outputs of the form OP RETURN baba
deadbeef, where baba is our tag and deadbeef is our payload (in our case, the interlink commit-
ment). A bloom filter for baba will then match this output and subsequently the transaction that
contains it and this is how our specialized SPV nodes can discover our outputs. The full nodes
forwarding the velvet transactions to the SPV nodes don’t have any knowledge of what a velvet
fork even is, let alone that they are forwarding its transactions.

The tag we use for our transactions is 696e7465726c696e6b, which is the ASCII encoding of
interlink. An example of such a real-world velvet transaction created by our deployed interlinker
on the Bitcoin Cash testnet can be seen on Figure 3.3.

3.5 Fault Tolerance
It is important to note that the interlinker works on a best-effort basis. Due to the nature of Velvet
Forks though, no failure is fatal. The types of failures are as follows:

• Crash failure: The interlinker crashes or halts.

• Omission failure: The interlinker fails to push a transaction upon seeing a new block.

• Timing failure: The interlinker pushes a transaction which fails to be included in the
upcoming block.

• Response failure: The interlinker pushes a transaction with an invalid interlink.
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Figure 3.3: An actual velvet fork transaction.

Cost per Formula Current estimation
Day txFee ∗ 10 ∗ 24 0.13€

Month perDay ∗ 30 3.9€
Year perMonth ∗ 12 46.8€

Table 3.1: Cost analysis of operating an interlinker on the Bitcoin Cash mainnet.

• Arbitrary failure: The interlinker pushes a transaction before a new block is seen or pushes
a duplicate for a specific upcoming block twice.

We will study how these failures can be mitigated in the next section.

3.6 Viability
Making the operation of the interlinker affordable is key in order to allow many parties to run it.
We will estimate the cost of operation now.

Our transaction size (txBytes) is constant at exactly 244 bytes. The median Bitcoin Cash fee
per byte (feePerByte) at the time of writing (November 2018) is 1 satoshi. Multiplied by our
transaction size this gives us a transaction fee (txFee = txBytes ∗ feePerByte) of 244 satoshis. Our
complete estimations based on the current price of Bitcoin Cash can be seen on Table 3.1.

We provide two implementations of an interlinker which both run in production. We’ll now
look at the pros and cons of each.

3.7 Python implementation with Bitcoin-ABC
Our first implementation is built on top of Bitcoin-ABC. Bitcoin-ABC is the reference implemen-
tation for Bitcoin Cash in C++. It is a fork of the original Bitcoin codebase (now Bitcoin Core),
and it was the first ever implementation to support Bitcoin Cash. It has a very active community
of developers and users. Due to its heritage from Bitcoin Core the code is very well written and
tested, and any new feature for the Bitcoin Cash chain appears on Bitcoin-ABC first.

We run Bitcoin-ABC as a full node and interface with it using JSON-RPC. The interlinker is
a Python module which knows (a) the location and credentials to connect with the full node and
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(b) the velvet fork genesis block id. We use the python-bitcoinrpc library [11] for the JSON-RPC
communication.

After the interlinker makes sure the full node is fully synced it starts waiting for new blocks.
As described above we need our interlinker to get notified whenever there’s a new block so that
it can send a transaction with the new interlink for inclusion in the upcoming block. There’s two
options to get notified for new blocks from a full node.

3.7.1 Block Discovery
The first option is to utilize the ZeroMQ [12] functionality of Bitcoin-ABC. If compiled with the
appropriate flags, Bitcoin-ABC can create a ZeroMQ channel where it will send notifications for
new blocks and transactions. While the method seems very modern, it has some pitfalls. The main
pitfall is race conditions: it is possible that the node pushes out a ZeroMQ notification about a
block, however that block has not finished saving in the node’s database, causing an immediate
getblock request on the block to fail. Also, the ZeroMQ functionality is not enabled by default:
one needs to compile the node with specific flags. While both issues are not fatal, in order to keep
the interlinker as compatible with existing nodes as possible and to avoid workarounds we decided
against using this functionality.

What we ended up using is busy polling through JSON-RPC with the getbestblockhash
method. Every 5 seconds the interlinker will check the best block hash and if it doesn’t match the
one previously given then this means that there’s been a new block.

1 tip_id = ’’
2 while True:
3 possibly_new_tip_id = rpc.getbestblockhash()
4 if possibly_new_tip_id == tip_id:
5 sleep(NEW_TIP_CHECK_INTERVAL_SECONDS)
6 continue
7 tip_id = possibly_new_tip_id

3.7.2 Reaction to a New Block
When there is a new block, the interlinker computes the correct interlink for it, by updating the
interlink with all the intermediate blocks from the velvet fork genesis up to and including the
new block. It then computes the Merkle Tree root and includes it in an SPV tagged output.
Subsequently it wraps the output inside a change transaction and sends it to the network.

We also see the use of shelve on the code below. shelve is a Python library which allows
us to persist Python objects on disk and access them on demand. We will see promptly how we
utilize shelve to act as a database of computed interlinks in order to speed up our computations.

1 logger.info(’new block "%s"’, tip_id)
2 with shelve.open(db_path) as db:
3 new_interlink = interlink(tip_id, db)
4 logger.debug(’new interlink "%s"’, new_interlink)
5 logger.info(’mtr hash "%s"’, new_interlink.hash().hex())
6 logger.info(’velvet tx "%s"’, send_velvet_tx(new_interlink.hash()))

3.7.3 Calculating the Interlink
The naive way to calculate the interlink would be starting from the velvet genesis block to keep
a running interlink and sequentially update it. Considering that between the tip and the velvet
genesis there could be millions of blocks, and for each block we need to issue a JSON-RPC call to
get its block hash by using getblockhash. We experimentally found this method to take upwards
of 15 seconds for approximately 15000 blocks, averaging at 1000 blocks/second.

To make this process faster we cache all interlinks we compute. This caching happens inside the
store shown in the code below. store is a dictionary which maps block ids to their corresponding
interlinks. In order to compute an interlink for a given tip we traverse the blockchain from the
tip until we end up at a block for which the interlink is already available. We always ensure the
cache contains at least the interlink for the velvet genesis which is empty and only contains the
genesis pointer (of level ∞). We keep the block ids between the tip and the block with the cached
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interlink and then proceed to update the interlink that was found with each intermediate block id,
in order. In doing so we also save each interlink we compute to its corresponding block id in the
store, so that it will be available if we ever need it again. After the interlink has been updated
with all blocks we are done and we can return it as the final result.

1 def interlink(tip_id, store=None):
2 store = {} if store is None else store
3 intermediate_block_ids = deque()
4 intermediate_id = tip_id
5 if VELVET_FORK_GENESIS not in store:
6 store[VELVET_FORK_GENESIS] = genesis_interlink()
7 while intermediate_id not in store:
8 intermediate_block_ids.appendleft(intermediate_id)
9 intermediate_id = prev(intermediate_id)

10
11 intermediate_interlink = store[intermediate_id]
12 for block_id in intermediate_block_ids:
13 intermediate_interlink = store[block_id] = \
14 intermediate_interlink.update(block_id, level(block_id))
15 return intermediate_interlink

3.7.4 Interlink
It’s time to look at how we programmatically represent the interlink. We take the simplest approach
which is to represent it as a POPO (Plain Old Python Object).

To instantiate an interlink one needs a velvet genesis id and optionally a list of blocks. This
list of blocks represents the interlink pointers, where the element at block[i] is the id of the most
recent block at level i. If the list of blocks is not provided the interlink is initially empty.

1 class Interlink:
2 def __init__(self, genesis, blocks=None):
3 self.genesis = normalized_block_id(genesis)
4 self.blocks = [] if blocks is None else blocks

The update method is a straightforward adaptation of Algorithm 4. It’s important to note
that instead of mutating the self object, update operates on a new copy which it then returns.
This makes any Interlink object in essence immutable which allows us to cache it very elegantly.

1 def update(self, block_id, level):
2 block_id = normalized_block_id(block_id)
3 blocks = self.blocks.copy()
4 for i in range(0, level+1):
5 if i < len(blocks):
6 blocks[i] = block_id
7 else:
8 blocks.append(block_id)
9 return Interlink(genesis=self.genesis, blocks=blocks)

The commitment is generated by the hash method defined on Interlink, which after getting
the representation of the interlink as an array, including the velvet genesis as the last element, then
calculates the Merkle Tree root (abbreviated as mtr) of a tree with the elements of this array as
leaves.

1 def as_array(self):
2 return self.blocks + [self.genesis]
3
4 def hash(self):
5 return mtr(self.as_array())

3.7.5 Bitcoin-style Merkle Trees
For implementing the mtr function seen above we searched for existing Python libraries offering
this functionality. While some libraries came up, none of them implemented the Bitcoin-style
Merkle Trees we were after. This functionality is definitely implemented in some of more general
Python Bitcoin libraries we make use of however it isn’t exposed. This led us to write our own
implementation of Bitcoin-style Merkle Trees.
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We only implement the root calculation as described in Section 2.1.3 in mtr. mtr accepts an
array of leafs. The function works by taking a level of the tree (initially the leafs) and repeatedly
generating the upper level. This process continues until the level reached only has one element,
where it’s declared the root and is returned as the result. The function for generating the upper
level, next level uses many Python idioms and this requires an explanation. It starts by taking a
level and then pairing its element with its adjacent. This happens with zip longest which takes
2 lists and ”zips” them together like so: zip longest([1, 2, 3], [4, 5, 6]) = [(1, 4), (2,
5), (3, 6)]. For the uninitiated we provide a Haskell implementation below.

1 zip_longest :: [a] -> [a] -> a -> [a]
2 zip_longest (x:xs) (y:ys) fillvalue = (x, y) : zip_longest xs ys fillvalue
3 zip_longest (x:xs) [] fillvalue = (x, fillvalue) : zip_longest xs [] fillvalue
4 zip_longest [] (y:ys) fillvalue = (fillvalue, y) : zip_longest [] ys fillvalue
5 zip_longest [] [] _ = []

The two lists passed to zip longest are level[::2] which is all even elements of level and
level[1::2] which is all odd elements. We use zip longest instead of the regular zip to account
for the case where level is of odd length and we need to hash the last element with itself.

1 from itertools import zip_longest
2 def next_level(level):
3 return [hash_siblings(l, r) for l, r in zip_longest(level[::2], level[1::2],

fillvalue=level[-1])]

After getting the list of pairs we go through it hashing the pairs together.
1 from hashlib import sha256
2 def hash_siblings(l, r):
3 h1, h2 = sha256(), sha256()
4 h1.update(l)
5 h1.update(r)
6 h2.update(h1.digest())
7 return h2.digest()

This setup makes our Merkle Tree root calculation very straightforward.
1 def mtr(leafs):
2 assert len(leafs) > 0
3 level = leafs
4 while len(level) > 1:
5 level = next_level(level)
6 return level[0]

3.7.6 Velvet Transactions
For creating the SPV tagged outputs we utilize the python-bitcoinlib library [31]. We construct
the outputs array including a single script with the OP RETURN, our SPV tag which is the ASCII
encoding for interlink and our payload which we expect to be our interlink commitment. We
then serialize a transaction with this output.

1 from bitcoin.core import CMutableTxOut, CScript, CMutableTransaction, OP_RETURN
2 def create_raw_velvet_tx(payload_buf):
3 VELVET_FORK_MARKER = b’interlink’
4 digest_outs = [CMutableTxOut(0, CScript([OP_RETURN, VELVET_FORK_MARKER, payload_buf]))]
5 tx = CMutableTransaction([], digest_outs)
6 return tx.serialize().hex()

The next stage is to actually send the transaction. Of course a transaction with only one output
is incomplete and invalid. In order to fill it in with the appropriate inputs and change output we
turn to our Bitcoin-ABC node. We use the fundrawtransaction JSON-RPC method in order to
do all the above. We then only have to sign and send the transaction out in the network.

1 def send_velvet_tx(payload_buf):
2 change_address = rpc.getaccountaddress("")
3 funded_raw_tx = rpc.fundrawtransaction(create_raw_velvet_tx(payload_buf),
4 {’changeAddress’: change_address})[’hex’]
5 signed_funded_raw_tx = rpc.signrawtransaction(funded_raw_tx)[’hex’]
6 return rpc.sendrawtransaction(signed_funded_raw_tx)
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3.7.7 Funding
It is important to note here that in order to send the transactions, the interlinker has to pay
transaction fees as seen earlier. However, we haven’t talked about the interlinker controlling a
wallet or private keys which would make it seem like there is no way to fund the transactions.
Because of how the JSON-RPC methods work we don’t need to specify a private key or wallet
external to the full node and we can let the full node create and pay for our transactions using its
default wallet. Thus the way to fund the interlinker is to fund the default wallet of the full node.

3.7.8 Dependency Management
We utilize Pipenv [27] for dependency management. Pipenv makes it easy to have a centralized file
with a list of all dependencies, as well as a so-called lock file where each dependency is absolutely
specified with a specific version and hash for its wheel file. It is great for reproducing the exact
environment where the application is well-tested. It also makes installation of all dependencies
very easy with just pipenv install.

3.7.9 Testing
The code is thoroughly unit-tested using pytest [20]. The Interlink implementation is a very crucial
part of our implementation and is tested as follows.

1 from interlink import Interlink
2
3 def test_interlink():
4 interlink = Interlink(genesis=b’\x01’)
5 interlink = interlink.update(’0c’, 5)
6 interlink = interlink.update(’0b’, 4)
7 interlink = interlink.update(’0a’, 2)
8 assert interlink.as_array() == [b’\x0a’, b’\x0a’, b’\x0a’, b’\x0b’, b’\x0b’, b’\x0c’, b’\x01’]
9

10 def test_interlink_cascading():
11 interlink = Interlink(genesis=b’\x02’)
12 interlink = interlink.update(’0a’, 2)
13 interlink = interlink.update(’0b’, 4)
14 interlink = interlink.update(’0c’, 5)
15 assert interlink.as_array() == [b’\x0c’] * 6 + [b’\x02’]
16
17 def test_interlink_str():
18 assert str(Interlink(genesis=b’\x02’)) == ’[1 * 02]’

The Bitcoin-style Merkle Trees are also very important to get right. To this end we generate
testcases adapted from actual Bitcoin blocks by making sure the merkle tree root of their trans-
action ids matches the one found in the block. We also make sure to also test the boundaries (for
example having 0 and 1 leafs).

1 import pytest
2 import json
3
4 from merkle import mtr
5
6 def do_test_fixture(fixture_path):
7 with open(fixture_path, ’r’) as f:
8 fixture = json.load(f)
9 expected_merkleroot = bytes.fromhex(fixture[’merkleroot’])[::-1]

10 txs = [bytes.fromhex(tx_id)[::-1] for tx_id in fixture[’txs’]]
11 assert mtr(txs) == expected_merkleroot
12
13 def test_bitcoin_block_100():
14 do_test_fixture(’./fixtures/merkle/bitcoin_block_100.json’)
15
16 def test_bitcoin_cash_testnet_2_txs():
17 do_test_fixture(’./fixtures/merkle/bitcoin_cash_testnet_2_txs.json’)
18
19 def test_bitcoin_cash_testnet_big():
20 do_test_fixture(’./fixtures/merkle/bitcoin_cash_testnet_1259110.json’)
21
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22 def test_no_leafs():
23 with pytest.raises(AssertionError):
24 mtr([])

3.7.10 Distribution
Our software is production-grade and we release it under the open source MIT license. 2.

3.8 JavaScript implementation with bcash
The second implementation is build on top of the bcash JavaScript library. bcash implements a
full node and wallet functionality exclusively in JavaScript without being based on the Bitcoin
C++ codebase as did most previous solutions. A major advantage of bcash is that it implements
an SPV node too, which is very useful since the interlinker only needs the block ids of the chain
but doesn’t need to know about the block contents, so requiring a full node to run it would be a
waste of space and bandwidth.

3.8.1 Architecture
The bcash architecture is a departure from the JSON-RPC paradigm described above and requires
some explanation. One major difference is that this implementation doesn’t require an external
node: the interlinker is a standalone program which due to the bcash library is also an SPV node.
bcash offers Node classes which are standalone nodes. Apart from SPV it also offers a FullNode
class.

Let’s focus on SPVNode for now. The node is mainly composed of the following subcomponents:

• A chain object which holds the current blockchain.

• A pool object which is used for bidirectional communication with other nodes in the network.

• A mempool object which holds the unconfirmed transactions in the network.

These components are the ones crucial for the node to function. bcash offers more functionality
for nodes such as JSON-RPC and HTTP APIs, which we will not make use of.

bcash is designed to be very modular so not much logic is found within its Node classes, as they
only wire the components they are composed of together. The architecture is ripe for such wiring
as bcash makes heavy use of the event system JavaScript is known for.

What we implement is an InterlinkerNode class which augments the functionality of SPVNode
by extending it.

3.8.2 Block Discovery
bcash makes it very easy to know when a new block has been discovered: its SPVNode class offers
a block event that we can listen on for new blocks.

1 this.on(’block’, async (blk) => {
2 this.ourLogger.info(’got block event (blkid=%s, height=%d)’, blk.rhash(), blk.height);
3 await this.doInterlink();
4 });

3.8.3 Synchronization
Sending velvet transactions while we still are not completely synced is not desired behavior. Unfor-
tunately, bcash does not provide any mechanism in order to know when the Initial Block Download
is complete.

We work around this by use of debounce. First we should explain what debounce is: when we
debounce a function foo we should also provide a delay in milliseconds. For example we could do

2The code is available at https://github.com/decrypto-org/bch-interlinker
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bar = debounce(foo, 1000) where bar is a new function. We can then call bar with the exact
same arguments we would foo, however debouncing makes it so that foo will only be called after
1000 milliseconds have passed since the last call to bar. This technique is usually utilized to avoid
having a user double-click a button perform a destructive action twice. It’s useful here because
we can have a function onSync that we debounce and now call maybeSync. We attach maybeSync
to the block event we saw earlier. We assume that when our node is not synced we can expect
multiple subsequent block events. We guard against these events because of the debounce. When
we’re satisfied that enough time with no events occurring has passed, finally onSync is actually
called, which removes the maybeSync handler and sets the final handler to interlink on each block
that we saw previously.

It is important to note that this is only a heuristic but it has proven to work well enough during
our testing.

1 onSync() {
2 this.ourLogger.info(’chain synced’);
3 this.wallet = this.walletDB.primary;
4 this.removeListener(’block’, this.maybeSynced);
5 this.on(’block’, async (blk) => {
6 this.ourLogger.info(’got block event (blkid=%s, height=%d)’, blk.rhash(), blk.height);
7 await this.doInterlink();
8 });
9 this.doInterlink().then();

10 }

3.8.4 Reaction to a New Block
Whenever a new block occurs we calculate the interlink and send a transaction with its commitment
just as before. This code looks almost identical in form to the previous implementation: we compute
the interlink, calculate the commitment, create a transaction with a tagged SPV output and send
it. Here wallet.send additionally takes care of the funding we saw in the previous implementation.

1 async doInterlink() {
2 const interlink = await this.getInterlinkSinceBlock(VELVET_GENESIS);
3 const hash = interlink.hash();
4
5 this.ourLogger.info(’interlink hash = %s’, hash.toString(’hex’));
6 try {
7 const tx = await this.wallet.send({
8 outputs: [bcash.Output.fromScript(taggedSPVOutput(hash), 0)],
9 });

10 this.ourLogger.info(’sent tx (txid=%s)’, revHex(tx.hash()));
11 } catch (e) {
12 this.ourLogger.error(e);
13 this.ourLogger.error(’not enough funds to publish interlink tx’);
14 this.ourLogger.error(’feed me: %s’, await this.wallet.receiveAddress());
15 return;
16 }
17 }

3.8.5 Calculating the Interlink
Here we implement the naive approach that we discussed in the previous implementation for
calculating the interlink. We can safely do this as there are no speed concerns, seeing that we
have direct access to our chain and no JSON-RPC calls need to transpire here. This makes this
procedure almost instant.

1 async getInterlinkSinceBlock(blockId) {
2 const interlink = new Interlink();
3 let blk = await this.chain.getEntryByHash(blockId);
4 let blockCount = 0;
5 let lastBlock = blk;
6 while (blk) {
7 ++blockCount;
8 lastBlock = blk;
9 interlink.update(blk.hash);
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10 blk = await this.chain.getNextEntry(blk);
11 }
12 this.ourLogger.info(’saw %d blocks’, blockCount);
13 this.ourLogger.info(’last block (id=%s, height=%d)’, revHex(lastBlock.hash), lastBlock.height);
14 return interlink;
15 }

3.8.6 Interlink Representation
In similar fashion to the previous implementation we represent the interlink as a Plain Old
JavaScript Object. Note that here our update is destructive in contrast as we don’t utilize the
immutability for caching.

1 class Interlink {
2 constructor() {
3 this.list = [];
4 }
5
6 update(blockId) {
7 const lvl = level(blockId, MAX_TARGET);
8 for (let i = 0; i <= lvl; ++i) {
9 if (i < this.list.length)

10 this.list[i] = blockId;
11 else
12 this.list.push(blockId);
13 }
14 }
15 }

Calculating the commitment here is much easier here, as bcash provides as with a good API
for creating and manipulating Bitcoin-style Merkle Trees.

1 hash() {
2 return merkle.createRoot(hash256, [...this.list])[0];
3 }

3.8.7 Velvet Transactions
We create SPV tagged outputs by leveraging the Script API offered by bcash. All we need to do
is simply create an empty script and then push in sequence an OP RETURN, our SPV tag and then
the payload.

1 const {Script, MTX} = require(’bcash’);
2
3 const SPV_TAG = Buffer.from(’interlink’);
4
5 module.exports = function taggedSPVOutput(buffer) {
6 const script = new Script();
7 script.pushOp(Script.opcodes.OP_RETURN);
8 script.pushData(SPV_TAG);
9 script.pushData(buffer);

10 return script.compile();
11 };

3.8.8 Distribution
Our software is production-grade and we release it under the open source MIT license. 3.

3.9 Deployment
At the time of writing of this thesis, both implementations run in production on the Bitcoin Cash
testnet chain and have been running for over 3 months. We started with our first deployment
late September 2018, with the first prototype of our Python interlinker. This gave us a chance to

3The code is available at https://github.com/gtklocker/bcash-interlinker-js
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Figure 3.4: Reliability of our testnet deployment.

catch bugs that only appear on long running processes and make sure our software is resilient to
network and other library failures. As new features and bug fixes kept rolling in our software we
continuously updated the deployments.

3.9.1 Docker
In order to minimize the dependencies and complexity of running this software we rely on the
industry standard, Docker [23]. With Docker we specify the steps required to build an image with
all required dependencies that acts like an executable. Docker also allows our service to run in an
isolated sandbox without access to the rest of the host system.

We provide Dockerfiles for both our implementations.

3.9.2 docker-compose
We also rely on docker-compose [14] in order to make deployments easy, having a single configura-
tion which describes for example how the ABC node and our Python interlinker should be wired
together in order to work well. All in all, this makes for a very quick and painless deployment
process, allowing any interested party to run the interlinker on their own. docker-compose was
especially invaluable in painlessly keeping our deployment in sync with our continuously changing
codebases.

We provide reference docker-compose.yml files for both our implementations.

3.10 Experimental Data
We will now examine real-world data gathered from our Bitcoin Cash testnet deployment. On
Figure 3.4 we can look at the reliability of our interlinker deployment. We can see that about 80%
of the blocks have been correctly interlinked with our velvet transactions, and about 10% of them
only have 1 interlink pointer missing, which makes them potentially usable. With∞ we denote the
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Figure 3.5: Level distribution on Bitcoin Cash testnet.

case where all pointers are missing due to a block only having incorrect interlinks or no interlinks
at all.

In order to estimate how our deployment would perform in time we can assume that our velvet
genesis matches the real genesis. On Figure 3.5 we see the growth of the interlink size on the
Bitcoin Cash testnet. We also look at the interlink sizes on Bitcoin and Bitcoin Cash mainnet on
Figure 3.6, which is a more realistic environment, where we notice that the level increase is less
steep than on testnet.

3.10.1 Methodology
For our estimations it was required that we obtained the corresponding chains. However, obtain-
ing the full chains as we have seen is cumbersome, as hundreds of gigabytes of data need to be
downloaded for every chain. We noticed that for our purposes only the headers were required,
but even with this observation there was still no easy way to obtain the header chain for major
cryptocurrencies. To this end we implemented a utility in Haskell called blockheaders-dl 4. The
utility connects to Electrum servers corresponding to the requested cryptocurrency and repeatedly
queries the headers until all the headers are downloaded. Bitcoin, Bitcoin Cash and Litecoin are
currently supported. With this utility we were able to download and process all these blockchains
in a few minutes, whereas synchronizing full nodes for each would take more than a week.

3.11 Interlink Compression
We will now revisit the interlink encoding. Recall that we created the interlink encoding by creating
a Merkle Tree with the interlink elements as its leafs and taking its root. We call this the block
list construction. During our deployment on the Bitcoin Cash network it became evident that an
interlink block list construction contained lots of repetition. This repetition is not a problem in
the interlink encoding itself, as it is constant. However if for example half the elements of a block

4The code is available at https://github.com/gtklocker/blockheaders-dl
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list are duplicates then the Merkle Tree would be one level higher and any inclusion proof would
take up one more item than if the leafs did not contain duplicates.

We call our construction a block set construction, because each block id is included only once
in the Merkle Tree leaves. We evaluated our construction on the Bitcoin Cash mainnet, assuming
that our velvet fork genesis is the actual genesis at height 0 (unlike our velvet genesis). This allows
us to examine how our solution would behave in time. In Figure 3.7 we see a comparison between
the size of an interlink inclusion proof using both constructions. The block list inclusion proofs
appear to grow with the size of the chain, whereas the block set inclusion proof remain almost
constant around 3. The relative savings are shown in Figure 3.8, where as the chain grows we see
savings of up to 50%.

An example of how a block list can end up containing many duplicates is not difficult to
imagine. Suppose a very high-level µ-superblock is mined, and that for some period after that, at
best (µ− λ)-superblocks are mined. For that period, the block list will contain λ duplicates.

It is important that the leafs in the block set are consistently ordered, so that it can be easy for
provers to verify the included commitment is correct. An option is ordering by value, where the
leafs are in ascending or descending block ID order. Another option is ordering by level, where the
block IDs are in order from level 0 to ∞ as usual, but duplicates are eliminated. For both cases,
the genesis id is always assumed to be included at a specific location, either at the beginning or
the end.
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Figure 3.8: Interlink inclusion proof savings by utilizing the block set construction.
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Chapter 4

NIPoPoW Velvet Fork Prover

Now that we’ve established a fork on the Bitcoin Cash chain, we show how our fork can be put to
use by creating proofs. We introduce a kind of client called a prover which can create all kinds of
NIPoPoW proofs on demand.

Let’s assume we have an SPV node. We set the bloom filter to our velvet fork tag in order to
get all blocks containing only the transactions of the fork. It’s possible to then extract from each
transaction the payload, which should be the interlink commitment.

bcash, also used for the interlinker earlier, turns out the be the only option for an SPV node
on Bitcoin Cash, making it the obvious choice for the prover.

4.1 Overview
Our prover works as follows. We expect a user to run the prover, passing as a parameter if they
want a suffix or infix proof. If they desire an infix proof they have to provide the block of interest.
Once they do that the prover runs and syncs with the Bitcoin Cash blockchain via SPV. It does
some similar work to the work that an interlinker does: it knows what the correct interlink is for
each block. It then checks the included commitments on each block and keeps a valid commitment
for each block if found. A block containing a valid commitment is called a valid velvet. Interlink
pointers can only be used on valid velvets. Once the chain is synced and the prover knows the
valid velvets along with the whole blockchain it creates a proof of the requested type and outputs
it in JSON format.

4.2 Interlink Implementation
Implementing an interlink structure is something we’ve already covered many times. Our imple-
mentation here is based on immutable value objects holding the interlink. Updating an interlink
is done in the usual manner and creates a new interlink. What’s different here is that we have
a proof method: we use this method to generate a proof of inclusion of a specific pointer in the
interlink commitment. We also need a way to be able to get a pointer from a specific level on
the interlink and this is accomplished with the at method. Note that at can be asked for a level
higher than the size of the interlink, in which case the velvet genesis is returned as it’s assumed to
be a block of level ∞.

1 class Interlink {
2 list: Array<BlockId>;
3 genesisId: BlockId;
4
5 constructor(genesisId: BlockId, list: Array<BlockId> = []) {
6 this.genesisId = genesisId;
7 this.list = list;
8 }
9

10 update(blockId: BlockId) {
11 const list = this.list.slice();
12 const lvl = level(blockId);
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13 for (let i = 0; i <= lvl; ++i) {
14 if (i < list.length) list[i] = blockId;
15 else list.push(blockId);
16 }
17 return new Interlink(this.genesisId, list);
18 }
19
20 proof(level: number) {
21 return merkle.createBranch(hash256, level, [...this.list]);
22 }
23
24 hash() {
25 return merkle.createRoot(hash256, [...this.list])[0];
26 }
27
28 get length() {
29 return this.list.length;
30 }
31
32 at(lvl: number) {
33 if (lvl >= this.list.length) {
34 return this.genesisId;
35 }
36 return this.list[lvl];
37 }
38 }

4.3 Locating Velvet Transactions
Locating the velvet transactions is very easy considering that all our velvet transactions are SPV
tagged. The only thing we have to do is add the SPV tag in our bloom filter. We do this right
before connecting to the network.

1 module.exports = class ProverNode extends bcash.SPVNode {
2 // ...
3 async connect() {
4 this.pool.watch(Buffer.from(VELVET_FORK_MARKER));
5 await super.connect();
6 }
7 // ...
8 }

4.4 Extracting Interlink Commitments
we have to check that the transaction the valid form described earlier (OP RETURN <tag> <commitment>).
In order to do that we look at the outputs of each transaction and only keep any outputs of our
form. If some output matches then we extract the script’s third element which is the commitment.

1 const extractInterlinkHashes = compose(
2 map(
3 compose(
4 head,
5 drop(1)
6 )
7 ),
8 filter(isInterlinkData),
9 map(

10 compose(
11 getCleanScriptData,
12 prop("script")
13 )
14 ),
15 filter(isBurnOutput),
16 prop("outputs")
17 );
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4.5 Handling Merkle Blocks
When a block or transaction of a block matches our bloom filter, the block is relayed by full nodes
as a merkleblock message. MerkleBlocks contain the header of the actual block as well as the
transactions ids that matched. It also contains a proof of inclusion for all the transactions ids
provided. One can check this proof of inclusion with accordance to the merkleRoot inside the
block header. The transactions are included in subsequent tx messages. bcash hides this process
from the user: on a new block event a MerkleBlock is provided and it contains a txs record, where
the transactions that matched are included in full.

In order to check if we have matched transactions in a block all we have to do is check if its
.txs array is non-empty. If it is not then this block is definitely not a valid velvet. If it is not,
then we have to ensure a correct form and extract the commitment, also saving it. We utilize the
method extractInterlinkHashes and map it over all transactions in the block.

1 const extractInterlinkHashesFromMerkleBlock = compose(
2 unnest,
3 map(extractInterlinkHashes),
4 prop("txs")
5 );

4.6 RealLink & Verifying Interlink Commitments
We extend the realLink discussed earlier. Other than allowing us to get the interlink of any block
it also allows us to check if a block is a valid velvet. It is able to do that as it gets notified for every
new block seen during the synchronisation. When a new block appears, it gets informed about the
block id and the interlinks included in the block. It keeps a running interlink in the same fashion
the interlinker does so because the blocks events happen in-order it can check whether its running
interlink matches the ones included in the block. In case there’s a match the block is marked as
a valid velvet and the running interlink is updated so that RealLink can be ready to process the
next block.

1 module.exports = class RealLink {
2 blockIdToInterlink: BufferMap;
3 runningInterlink: Interlink;
4 validBlocks: BufferSet;
5
6 constructor(genesisId: BlockId) {
7 this.blockIdToInterlink = new BufferMap();
8 this.runningInterlink = new Interlink(genesisId);
9 this.validBlocks = new BufferSet();

10 }
11
12 onBlock(newBlockId: BlockId, interlinks: Array<Buffer>) {
13 if (this.blockIdToInterlink.has(newBlockId)) {
14 return;
15 }
16
17 this.blockIdToInterlink.set(newBlockId, this.runningInterlink);
18 if (
19 interlinks.some(interlink =>
20 interlink.equals(this.runningInterlink.hash())
21 )
22 ) {
23 this.validBlocks.add(newBlockId);
24 }
25 this.runningInterlink = this.runningInterlink.update(newBlockId);
26 }
27
28 get(blockId: BlockId) {
29 return this.blockIdToInterlink.get(blockId);
30 }
31
32 hasValidInterlink(blockId: BlockId) {
33 return this.validBlocks.has(blockId);
34 }
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35 };

4.7 Handling Merkle Blocks Redux
All information regarding the chain is sorted in a VelvetChain. A VelvetChain is the main
entrypoint for block events. It is the single source of truth about the blockchain. When there is a
new block, the whole block is associated with its id for later lookup, and its height is also recorded.
It then gathers the block’s interlink commitments and forwards them as a new event to realLink.

1 // ...
2 onBlock(blk: bcash.MerkleBlock, height: number) {
3 const id = blk.hash();
4 if (this.blockById.has(id)) {
5 return;
6 }
7
8 ++this.height;
9

10 if (!this.genesis) {
11 this.genesis = id;
12 this._realLink = new RealLink(this.genesis);
13 console.log("genesis was %O", blk);
14 }
15
16 this.blockById.set(id, blk);
17 this.heightById.set(id, this.height);
18 this.blockList.push(blk.hash());
19
20 const includedInterlinkHashes = extractInterlinkHashesFromMerkleBlock(blk);
21 this.realLink.onBlock(id, includedInterlinkHashes);
22
23 this.lastBlock = id;
24 }
25 // ...

4.8 Following Up
We implement the followUp algorithm as described in Algorithm 8. followUp acts on a VelvetChain
and requires a newerBlockId which is equivalent to B and µ.

We also see use of the levelledPrev function. levelledPrev, given a block id and a level will
attempt to cross the interlink pointer at the requested level. If the block is not a velvet block it
will fail and just return the previd.

A departure from the exact algorithm is that in our implementation we don’t return a block
set. Instead we return a block list which is sorted by height. By convention we also say that a
block A is left of another block B if B.height > A.height.

1 followUp(newerBlockId: BlockId, mu: Level): Array<BlockId> {
2 const genesis = nullthrows(this.genesis);
3 let id = newerBlockId;
4 let path = [id];
5 while (!id.equals(genesis)) {
6 id = this.levelledPrev(id, mu);
7 path.push(id);
8
9 if (level(id) === mu) {

10 break;
11 }
12 }
13
14 path.reverse();
15 return path;
16 }
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4.9 Finding the Velvet Upchain
Utilizing the followUp algorithm to implement Algorithm 9 is also pretty straightforward. How-
ever instead of only C↑µ we would like to implement C↑µ {B :} as this is needed by the prover.
Programmatically we reference B by its id as leftBlockId. The original algorithm repeatedly calls
to followUp until it has reached the genesis, which in code can be optimized away as we know
that we only need blocks after (and including) B. This is why we followUp until B only, and take
care of the special case where B is not a µ superblock. We look for the path from followUp for
any blocks which are left of B in the chain. If that is the case, the algorithm only keeps the part
of the path which is right of B, and B if it is included in the path and then exits.

1 findVelvetUpchain(
2 mu: Level,
3 leftBlockId: BlockId,
4 rightBlockId: ?BlockId = this.lastBlock
5 ): {
6 muSubchain: Array<BlockId>,
7 wholePath: Array<BlockId>
8 } {
9 const genesis = nullthrows(this.genesis);

10 let id = nullthrows(rightBlockId);
11
12 let wholePath = [];
13 let muSubchain = [];
14 if (level(id) >= mu) {
15 muSubchain.push(id);
16 }
17
18 let goneTooFar = false;
19 while (!id.equals(leftBlockId) && !id.equals(genesis) && !goneTooFar) {
20 let path = this.followUp(id, mu);
21 let outOfRangePathIndex = _.findLastIndex(path, x =>
22 this.isLR(x, leftBlockId)
23 );
24 if (outOfRangePathIndex !== -1) {
25 path.splice(0, outOfRangePathIndex + 1);
26 goneTooFar = true;
27 }
28
29 id = path[0];
30
31 if (level(id) >= mu) {
32 muSubchain.push(id);
33 }
34 wholePath = path.slice(1).concat(wholePath);
35 }
36
37 wholePath = [id, ...wholePath];
38
39 muSubchain.reverse();
40 return {
41 muSubchain,
42 wholePath
43 };
44 }

4.10 Crafting Suffix Proofs
Using these primitives we can now move on to creating our first proofs. The interface implemented
allows us to directly translate the pseudocode shown in Algorithm ??. The code will first initialize
the two parts of the proof, pi and chi to be empty. Then it will pick maxµ to be the level of
the rightmost stable block, C[−k], with B initially set to the genesis block, G. Then for each level
from maxµ up to and including 0, it utilizes findVelvetUpchain to get the velvet upchain from
the rightmost stable block up to and including B. If the µ superblocks of the chain are more than
m, the path returned is included and B is set to the m-th rightmost µ superblock of the path.
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1 function suffixProof({
2 chain: C,
3 k,
4 m
5 }: {
6 chain: VelvetChain,
7 k: number,
8 m: number
9 }): Array<BlockId> {

10 let leftId = nullthrows(C.genesis);
11 let pi: Array<BlockId> = [],
12 chi: Array<BlockId> = [];
13 let rightMostStableId = C.idAt(-k - 1);
14 let maxMu = C.interlinkSizeOf(rightMostStableId);
15
16 for (let mu = maxMu; mu >= 0; --mu) {
17 let { muSubchain, wholePath } = C.findVelvetUpchain(
18 mu,
19 leftId,
20 rightMostStableId
21 );
22 let newBlocks = wholePath;
23 if (mu > 0) {
24 if (muSubchain.length <= m) {
25 continue;
26 }
27 leftId = muSubchain[muSubchain.length - m];
28 let leftIdInWholePath = newBlocks.findIndex(id => id.equals(leftId));
29 newBlocks = newBlocks.slice(0, leftIdInWholePath);
30 }
31 pi = pi.concat(newBlocks);
32 }
33
34 for (let i = -k; i < 0; ++i) {
35 chi.push(C.idAt(i));
36 }
37
38 return pi.concat(chi);
39 }

4.11 Following Down
As we noted in Section 2.4.7, a proof is a valid infix proof with regards to a set of blocks if and
only if it contains those blocks, and it is traversable. This means th a suffix proof is also an infix
proof for any possible subset of its included blocks (assuming the infix predicate requires only block
header information which is included for every block).

If however, an infix proof for a specific block is required, it should be possible to augment our
suffix proof with it. To do this, we implement followDown, as seen in Algorithm 5.

The purpose of the algorithm is to link two blocks, starting from the higher-level block on the
right, hi and ending at the lower-level block on the left, lo. It attempts to take the largest possible
steps, using the maximum-level pointer available on hi’s valid interlink which does not surpass the
block of interest. If the interlink on some block the algorithm ends up is invalid, the block’s prevId
is used instead. Continuing in this manner, a traversable path is formed between hi and lo.

1 function followDown(C: VelvetChain, hi: BlockId, lo: BlockId) {
2 let B = hi;
3 let aux = [];
4 let mu = level(hi);
5 assert(C.heightOf(hi) >= C.heightOf(lo));
6 while (!B.equals(lo)) {
7 let Bp = C.levelledPrev(B, mu);
8 if (C.heightOf(Bp) < C.heightOf(lo)) {
9 --mu;

10 } else {
11 if (!B.equals(hi)) {
12 aux = [B, ...aux];
13 }
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14 B = Bp;
15 }
16 }
17 return aux;
18 }

Following down is not enough to promote an existing suffix proof to a traversable infix proof
as we will see now.

4.12 Going Back
Something the original NIPoPoWs paper doesn’t address is that our block of interest may have an
invalid interlink, thus it is not guaranteed that followDown will be enough. To mitigate this, we
make sure to create a valid path of valid interlinks back to our suffix proof block, with a procedure
called goBack, seen in Algorithm 10, which is very works similarly to followDown, but instead of
attempting to downgrade to lower levels it attempts to upgrade to higher levels.

Algorithm 10 The goBack function which produces the necessary blocks to connect a block right
to a preceeding block left.

1: function goBack(left, right, height, realLink, blockById)
2: aux ← ∅
3: while right 6= left do
4: for µ = level(left) down to 0 do
5: if realLink[id(right)][µ] = right.interlink[µ] then
6: B ← blockById[right.interlink[µ]]
7: if height[B] ≥ height[left] then
8: aux← aux ∪ {B}
9: right← B

10: break
11: end if
12: end if
13: end for
14: end while
15: return aux
16: end function

More specifically, suppose we have a suffix proof and we select two blocks, A and C. These
blocks are selected so that they are adjacent in the proof and that B, our block of interest, is
contained between them in the underlying blockchain. Also, C should be right of A to avoid
ambiguity. By following down we obtain a traversable path from C to B. If we augment a suffix
proof with this path, the result may not be traversable, as we have no guarantee that there is a
valid path from B to A. In order for our final proof to be traversable we have to ensure a valid
path between those two blocks.

To this end we implement goBack, which mimics followDown and connects lo to hi in the
same manner.

1 function goBack(C: VelvetChain, lo: BlockId, hi: BlockId) {
2 let aux = [];
3 assert(C.heightOf(hi) <= C.heightOf(lo));
4 while (!lo.equals(hi)) {
5 for (let mu = level(hi); mu >= 0; --mu) {
6 const b = C.levelledPrev(lo, mu);
7 if (C.heightOf(b) >= C.heightOf(hi)) {
8 lo = b;
9 aux.unshift(lo);

10 break;
11 }
12 }
13 }
14 aux.shift();
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15 return aux;
16 }

4.13 Crafting Infix Proofs
Using these tools we are able to craft our infix proofs. The implementation works only for a single
block of interest, B, but can be easily extended to multiple such blocks. It is assumed that the
infix predicate depends only on block header data. The algorithm starts by creating a standard
suffix proof. In case the suffix proof already contains the block of interest the suffix proof is enough
and can be returned. Otherwise, it will find the blocks in the proof before and after B: A and C.
Then the proof returned will be a concatenation of the following:

• The suffix proof up to and including A.

• The path obtained via goBack, ordered from A to B.

• B.

• The path obtained via followDown, ordered from B to C.

• The rest of the suffix proof starting from C.

1 function infixProof({
2 chain: C,
3 blockOfInterest: B,
4 k,
5 m
6 }: {
7 chain: VelvetChain,
8 blockOfInterest: BlockId,
9 k: number,

10 m: number
11 }): Array<BlockId> {
12 const suffixP = suffixProof({ chain: C, k, m });
13 if (suffixP.some(x => x.equals(B))) {
14 return suffixP;
15 }
16
17 const pi = suffixP.slice(0, -k),
18 chi = suffixP.slice(-k);
19
20 const afterBIndex = _.findIndex(pi, e => C.heightOf(e) >= C.heightOf(B));
21 const afterBBlock = pi[afterBIndex];
22 const beforeBIndex = Math.max(afterBIndex - 1, 0);
23 const beforeBBlock = pi[beforeBIndex];
24
25 return [
26 ...pi.slice(0, afterBIndex),
27 ...goBack(C, B, beforeBBlock),
28 B,
29 ...followDown(C, afterBBlock, B),
30 ...pi.slice(afterBIndex),
31 ...chi
32 ];
33 }

4.14 Type Safety
To ensure code quality we opted to use Flow [15]. Flow allowed us to have type safety while keeping
all the good characteristics of JavaScript. Unfortunately this introduced a couple of complications.

One is that our source files are not valid JavaScript anymore. In order to run our code we need
to pass it through a pre-processor like Babel which emits clean JavaScript that then Node can run.
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Figure 4.1: Snapshot from the test coverage report for the prover codebase.

Another is that all the external libraries we use, including bcash are not written including Flow
types. Flow does provide a repository with type definitions for popular packages, however due to
the niche category of our dependencies only a few were covered. This meant that the burden was
on us to write type definitions for our dependencies. We had to manually write type definitions
for bcash and buffer-map. Thankfully, there is previous work 1 on type definitions for bcoin which
we were able to utilize and extend since the APIs are really similar as bcash is a fork of bcoin.

4.15 Testing
Due to the real-time and asynchronous nature of the prover it’s important that our implementation
is resilient and bug-free. In order to assert that the code has been thoroughly unit tested, boasting
a code coverage of 90% as shown in Figure 4.1. The tests are written and run with Jest [16]. There
are also integration tests using real-world data.

1Available at https://github.com/OrfeasLitos/TrustIsRisk.js/blob/247c8b182f5bb4bed11df0d3b9136a3e27848798/
flow-typed/npm/bcoin_vx.x.x.js
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Chapter 5

Conclusion

5.1 Summary
In this work we have studied the state-of-the-art constructions for creating proofs in the Prover-
Verifier Model. We adapted the most fit construction for the purpose, NIPoPoWs, for the Bitcoin
setting, by utilizing the User Activated Velvet Fork deployment strategy outlined in the NIPoPoWs
paper and sidestepping the constant difficulty requirement.

We designed and implemented the specifics of the Velvet Fork, including methods for encoding
the interlink. We paid close attention to the consumption of the interlinks, making them easily
consumable by lite nodes by utilizing SPV tagged outputs.

We provided two implementations for the interlinker, an implementation which requires a
full-node and one which is based on a lite-node with SPV. These implementations actually create
the velvet fork and can be easily adapted to fork on any Bitcoin-based cryptocurrency, as well as
perform any other kind of velvet fork. They are both released as open-source and are production-
grade software.

We deployed the interlinker implementations on the Bitcoin Cash testnet, closely monitoring
their performance and reliability, while fixing any anomalies due to bugs in our software as they
developed.

We provided cost estimates for deploying our User-Activated Velvet Fork on Bitcoin Cash
mainnet, where it can be seen that even though one needs to spend one transaction per block, due
to the low fees on Bitcoin Cash is incredibly manageable even for individuals.

We analyzed blockchain data from Bitcoin and Bitcoin Cash, on their mainnets and testnets and
discovered that the interlink encoding could be improved. We provided an optimization for interlink
encoding based on our observations called interlink compression. We provided statistics which
indicate how much of an improvement such a change can bring on real-world blocks.

We provided an implementation for the prover, which is based on a lite node. The prover is
able to interact in the Bitcoin network, and has knowledge of the velvet fork, as well as of the
actual interlink of each block. It is capable of discovering the velvet transactions and recovering
the interlink commitments from them, and knowing if a block has a valid interlink or not. It is
capable of creating both suffix and infix proofs for Bitcoin Cash.

5.2 Proof Consumption
The velvet fork and prover together enable any user to create NIPoPoW proofs on Bitcoin Cash.
These proofs can be utilized as part of many applications. We will now look at some potential
applications of very high interest to the cryptocurrency community.

5.2.1 Super-light Clients
Currently lite clients operate by accepting multiple SPV proofs. As we have seen these proofs are
linear in chain size. One can very easily imagine modified light clients which have the ability to
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verify and compare NIPoPoW proofs instead of SPV proofs in order to discover the longest chain
or whether a transaction is included in the longest chain.

5.2.2 Cross-chain Transactions
Another popular application is cross-chain transactions: for example sending an amount of Bitcoin
to Ethereum trustlessly. Currently when one wishes to move from one cryptocurrency to the other
they usually utilize a centralized exchange. This is both time-consuming and trustless.

There is also the issue of the denomination: one would usually exchange their Bitcoin for an
equivalent amount of Ethereum, according to the market rate. While in some cases this is desired,
it is usually the case that one desires to transfer their funds to another cryptocurrency but keep
them in the original denomination.

To solve this issue there are tokens in the Ethereum network like WBTC [25] which claim to
offer an ERC20 token pegged 1:1 to Bitcoin, but have the need for a trusted third party called a
custodian who is entrusted to generate tokens at will. It should be obvious that such solutions are
not trustless.

An alternative would be to offer such a token but have the contract issue an amount of tokens if
and only if it can can be sufficiently proven that the actor who requested the issuance has burned
the same amount of Bitcoin on the other chain. Many constructions of this sort have been explored
in the literature [34], including most importantly a construction using NIPoPoWs by Kiayias and
Zindros [19]. An implementation of this construction in Solidity for the Ethereum chain has been
provided by Christoglou [7].

5.3 Future Work
5.3.1 Bitcoin Cash mainnet Deployment
In order to make our work really useful to the general public the obvious step would be to deploy
our interlinker on the mainnet network of Bitcoin Cash. This is a straightforward process, and it
is directly supported by the software as is. We note that due to the low fees of Bitcoin Cash and
consequently the low cost for operating an interlinker, it is very accessible for anyone to operate
such a fork.

5.3.2 Interlink Compression Implementation
While we propose interlink compression, the development was very recent and has not been yet
integrated in our interlinkers and prover. This change can be implemented and deployed in a
backwards-compatible manner, meaning that the existing interlinks will not be rendered invalid.
The changes to the interlinker implementation are fairly straightforward: only the interlink encod-
ing would have to change. However, the prover has to support both the block list and block set
constructions, and prefer the block set interlinks where available.

5.3.3 Bitcoin Deployment
The usefulness of NIPoPoWs is not limited to Bitcoin Cash only. The software can be easily
deployed on any Bitcoin-based cryptocurrency, including Bitcoin itself, only requiring minimal
changes.

5.3.4 Implementation For Other Major Cryptocurrencies
Other than Bitcoin-based cryptocurrencies, NIPoPoWs work for any Proof-of-Work cryptocurrency.
We think velvet forks like the one outlined in this work would be viable and incredibly beneficial
for many other cryptocurrencies, most notably Ethereum, Ethereum Classic, and Dash.
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5.3.5 Verifier Smart Contract Implementation
The Proof-of-Work sidechains implementation by Christoglou [7] outlined earlier is unable to verify
proofs created from velvet forked chains like the ones our provers create. It is therefore necessary
for the implementation to be modified in order to support such proofs. Such a contract, if deployed
on the Ethereum chain would allow users to trustlessly transfer Bitcoin Cash to the Ethereum chain
by making use of proofs our prover can generate for the Bitcoin Cash chain.
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Hohlfeld, and Klaus Wehrle. A quantitative analysis of the impact of arbitrary blockchain
content on bitcoin. In Proceedings of the 22nd International Conference on Financial Cryp-
tography and Data Security (FC). Springer, 2018.

[23] Dirk Merkel. Docker: lightweight linux containers for consistent development and deployment.
Linux Journal, 2014(239):2, 2014.

[24] Ralph C Merkle. A digital signature based on a conventional encryption function. In Con-
ference on the Theory and Application of Cryptographic Techniques, pages 369–378. Springer,
1987.

[25] Andrew Miller. Wbtc wrapped bitcoin an erc20 token backed 1:1 with bitcoin, 2019. URL:
https://www.wbtc.network/.

[26] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[27] Kenneth Reitz. Python development workflow for humans, 2017. URL: https://pypi.org/
project/pipenv/.

[28] Bitcoin Team. Developer guide - bitcoin, 2017. URL: https://bitcoin.org/en/developer-
guide.

[29] Nimiq Team. Nimiq, 2018. URL: https://nimiq.com/en/.

[30] WebDollar Team. Webdollar - currency of the internet, 2017. URL: https://webdollar.io.

[31] Peter Todd. petertodd/python-bitcoinlib: Python2/3 library providing an easy interface to the
bitcoin data structures and protocol, 2014. URL: https://github.com/petertodd/python-
bitcoinlib.

[32] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
Project Yellow Paper, 151, 2014.

[33] A Zamyatin, N Stifter, A Judmayer, P Schindler, E Weippl, and WJ Knottebelt. A wild velvet
fork appears! inclusive blockchain protocol changes in practice. In 5th Workshop on Bitcoin
and Blockchain Research, Financial Cryptography and Data Security, volume 18, 2018.

[34] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur Gervais, and
William J Knottenbelt. Xclaim: Interoperability with cryptocurrency-backed tokens. Techni-
cal report, Cryptology ePrint Archive, Report 2018/643, 2018. https://eprint. iacr. org . . . .

46

https://pypi.org/project/pytest/
https://pypi.org/project/pytest/
https://www.wbtc.network/
https://pypi.org/project/pipenv/
https://pypi.org/project/pipenv/
https://bitcoin.org/en/developer-guide
https://bitcoin.org/en/developer-guide
https://nimiq.com/en/
https://webdollar.io
https://github.com/petertodd/python-bitcoinlib
https://github.com/petertodd/python-bitcoinlib

	Introduction
	Motivation
	Related Work
	Structure

	Background
	Primitives
	Cryptographic Hash Functions
	Public-key Signatures
	Merkle Trees
	Bloom Filters

	Bitcoin
	Scripts
	Outputs
	Inputs
	Transactions
	Blocks
	Proof-of-Work
	Simplified Payment Verification
	Bitcoin Cash

	The Prover-Verifier Model
	Single-Prover Proofs
	Multi-Prover Proofs

	Non-Interactive Proofs of Proofs of Work
	Terminology
	Assumptions
	Levels
	Notation
	Interlink
	Suffix Proofs
	Infix Proofs
	Proof Validation
	Suffix Proof Verification
	Velvet Forks
	User-Activated Velvet Forks
	Velvet NIPoPoWs
	Invalid Interlink Handling


	Velvet Fork Implementation
	Picking a Velvet Genesis
	Faking Constant Difficulty
	Interlink encoding
	Discoverability
	Fault Tolerance
	Viability
	Python implementation with Bitcoin-ABC
	Block Discovery
	Reaction to a New Block
	Calculating the Interlink
	Interlink
	Bitcoin-style Merkle Trees
	Velvet Transactions
	Funding
	Dependency Management
	Testing
	Distribution

	JavaScript implementation with bcash
	Architecture
	Block Discovery
	Synchronization
	Reaction to a New Block
	Calculating the Interlink
	Interlink Representation
	Velvet Transactions
	Distribution

	Deployment
	Docker
	docker-compose

	Experimental Data
	Methodology

	Interlink Compression

	NIPoPoW Velvet Fork Prover
	Overview
	Interlink Implementation
	Locating Velvet Transactions
	Extracting Interlink Commitments
	Handling Merkle Blocks
	RealLink & Verifying Interlink Commitments
	Handling Merkle Blocks Redux
	Following Up
	Finding the Velvet Upchain
	Crafting Suffix Proofs
	Following Down
	Going Back
	Crafting Infix Proofs
	Type Safety
	Testing

	Conclusion
	Summary
	Proof Consumption
	Super-light Clients
	Cross-chain Transactions

	Future Work
	Bitcoin Cash mainnet Deployment
	Interlink Compression Implementation
	Bitcoin Deployment
	Implementation For Other Major Cryptocurrencies
	Verifier Smart Contract Implementation



